3.372 \(\int \frac{(d+e x)^{3/2}}{(b x+c x^2)^2} \, dx\)

Optimal. Leaf size=134 \[ -\frac{\sqrt{d+e x} (x (2 c d-b e)+b d)}{b^2 \left (b x+c x^2\right )}+\frac{\sqrt{d} (4 c d-3 b e) \tanh ^{-1}\left (\frac{\sqrt{d+e x}}{\sqrt{d}}\right )}{b^3}-\frac{\sqrt{c d-b e} (4 c d-b e) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d+e x}}{\sqrt{c d-b e}}\right )}{b^3 \sqrt{c}} \]

[Out]

-((Sqrt[d + e*x]*(b*d + (2*c*d - b*e)*x))/(b^2*(b*x + c*x^2))) + (Sqrt[d]*(4*c*d - 3*b*e)*ArcTanh[Sqrt[d + e*x
]/Sqrt[d]])/b^3 - (Sqrt[c*d - b*e]*(4*c*d - b*e)*ArcTanh[(Sqrt[c]*Sqrt[d + e*x])/Sqrt[c*d - b*e]])/(b^3*Sqrt[c
])

________________________________________________________________________________________

Rubi [A]  time = 0.183317, antiderivative size = 134, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {738, 826, 1166, 208} \[ -\frac{\sqrt{d+e x} (x (2 c d-b e)+b d)}{b^2 \left (b x+c x^2\right )}+\frac{\sqrt{d} (4 c d-3 b e) \tanh ^{-1}\left (\frac{\sqrt{d+e x}}{\sqrt{d}}\right )}{b^3}-\frac{\sqrt{c d-b e} (4 c d-b e) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d+e x}}{\sqrt{c d-b e}}\right )}{b^3 \sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^(3/2)/(b*x + c*x^2)^2,x]

[Out]

-((Sqrt[d + e*x]*(b*d + (2*c*d - b*e)*x))/(b^2*(b*x + c*x^2))) + (Sqrt[d]*(4*c*d - 3*b*e)*ArcTanh[Sqrt[d + e*x
]/Sqrt[d]])/b^3 - (Sqrt[c*d - b*e]*(4*c*d - b*e)*ArcTanh[(Sqrt[c]*Sqrt[d + e*x])/Sqrt[c*d - b*e]])/(b^3*Sqrt[c
])

Rule 738

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m - 1)*(
d*b - 2*a*e + (2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] + Dist[1/((p + 1)*(b^2 -
 4*a*c)), Int[(d + e*x)^(m - 2)*Simp[e*(2*a*e*(m - 1) + b*d*(2*p - m + 4)) - 2*c*d^2*(2*p + 3) + e*(b*e - 2*d*
c)*(m + 2*p + 2)*x, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] &
& NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && GtQ[m, 1] && IntQuadraticQ[a, b, c, d,
 e, m, p, x]

Rule 826

Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2,
Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /
; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{3/2}}{\left (b x+c x^2\right )^2} \, dx &=-\frac{\sqrt{d+e x} (b d+(2 c d-b e) x)}{b^2 \left (b x+c x^2\right )}-\frac{\int \frac{\frac{1}{2} d (4 c d-3 b e)+\frac{1}{2} e (2 c d-b e) x}{\sqrt{d+e x} \left (b x+c x^2\right )} \, dx}{b^2}\\ &=-\frac{\sqrt{d+e x} (b d+(2 c d-b e) x)}{b^2 \left (b x+c x^2\right )}-\frac{2 \operatorname{Subst}\left (\int \frac{\frac{1}{2} d e (4 c d-3 b e)-\frac{1}{2} d e (2 c d-b e)+\frac{1}{2} e (2 c d-b e) x^2}{c d^2-b d e+(-2 c d+b e) x^2+c x^4} \, dx,x,\sqrt{d+e x}\right )}{b^2}\\ &=-\frac{\sqrt{d+e x} (b d+(2 c d-b e) x)}{b^2 \left (b x+c x^2\right )}-\frac{(c d (4 c d-3 b e)) \operatorname{Subst}\left (\int \frac{1}{-\frac{b e}{2}+\frac{1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt{d+e x}\right )}{b^3}+\frac{((c d-b e) (4 c d-b e)) \operatorname{Subst}\left (\int \frac{1}{\frac{b e}{2}+\frac{1}{2} (-2 c d+b e)+c x^2} \, dx,x,\sqrt{d+e x}\right )}{b^3}\\ &=-\frac{\sqrt{d+e x} (b d+(2 c d-b e) x)}{b^2 \left (b x+c x^2\right )}+\frac{\sqrt{d} (4 c d-3 b e) \tanh ^{-1}\left (\frac{\sqrt{d+e x}}{\sqrt{d}}\right )}{b^3}-\frac{\sqrt{c d-b e} (4 c d-b e) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d+e x}}{\sqrt{c d-b e}}\right )}{b^3 \sqrt{c}}\\ \end{align*}

Mathematica [A]  time = 0.214338, size = 127, normalized size = 0.95 \[ \frac{\frac{b \sqrt{d+e x} (-b d+b e x-2 c d x)}{x (b+c x)}+\sqrt{d} (4 c d-3 b e) \tanh ^{-1}\left (\frac{\sqrt{d+e x}}{\sqrt{d}}\right )-\frac{\sqrt{c d-b e} (4 c d-b e) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{d+e x}}{\sqrt{c d-b e}}\right )}{\sqrt{c}}}{b^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^(3/2)/(b*x + c*x^2)^2,x]

[Out]

((b*Sqrt[d + e*x]*(-(b*d) - 2*c*d*x + b*e*x))/(x*(b + c*x)) + Sqrt[d]*(4*c*d - 3*b*e)*ArcTanh[Sqrt[d + e*x]/Sq
rt[d]] - (Sqrt[c*d - b*e]*(4*c*d - b*e)*ArcTanh[(Sqrt[c]*Sqrt[d + e*x])/Sqrt[c*d - b*e]])/Sqrt[c])/b^3

________________________________________________________________________________________

Maple [B]  time = 0.264, size = 237, normalized size = 1.8 \begin{align*}{\frac{{e}^{2}}{b \left ( cex+be \right ) }\sqrt{ex+d}}-{\frac{ced}{{b}^{2} \left ( cex+be \right ) }\sqrt{ex+d}}+{\frac{{e}^{2}}{b}\arctan \left ({c\sqrt{ex+d}{\frac{1}{\sqrt{ \left ( be-cd \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( be-cd \right ) c}}}}-5\,{\frac{ced}{{b}^{2}\sqrt{ \left ( be-cd \right ) c}}\arctan \left ({\frac{\sqrt{ex+d}c}{\sqrt{ \left ( be-cd \right ) c}}} \right ) }+4\,{\frac{{c}^{2}{d}^{2}}{{b}^{3}\sqrt{ \left ( be-cd \right ) c}}\arctan \left ({\frac{\sqrt{ex+d}c}{\sqrt{ \left ( be-cd \right ) c}}} \right ) }-{\frac{d}{{b}^{2}x}\sqrt{ex+d}}-3\,{\frac{e\sqrt{d}}{{b}^{2}}{\it Artanh} \left ({\frac{\sqrt{ex+d}}{\sqrt{d}}} \right ) }+4\,{\frac{{d}^{3/2}c}{{b}^{3}}{\it Artanh} \left ({\frac{\sqrt{ex+d}}{\sqrt{d}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)/(c*x^2+b*x)^2,x)

[Out]

e^2/b*(e*x+d)^(1/2)/(c*e*x+b*e)-e/b^2*(e*x+d)^(1/2)/(c*e*x+b*e)*c*d+e^2/b/((b*e-c*d)*c)^(1/2)*arctan((e*x+d)^(
1/2)*c/((b*e-c*d)*c)^(1/2))-5*e/b^2/((b*e-c*d)*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((b*e-c*d)*c)^(1/2))*c*d+4/b^3/
((b*e-c*d)*c)^(1/2)*arctan((e*x+d)^(1/2)*c/((b*e-c*d)*c)^(1/2))*c^2*d^2-d/b^2*(e*x+d)^(1/2)/x-3*e*d^(1/2)/b^2*
arctanh((e*x+d)^(1/2)/d^(1/2))+4*d^(3/2)/b^3*arctanh((e*x+d)^(1/2)/d^(1/2))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.21837, size = 1679, normalized size = 12.53 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x)^2,x, algorithm="fricas")

[Out]

[-1/2*(((4*c^2*d - b*c*e)*x^2 + (4*b*c*d - b^2*e)*x)*sqrt((c*d - b*e)/c)*log((c*e*x + 2*c*d - b*e + 2*sqrt(e*x
 + d)*c*sqrt((c*d - b*e)/c))/(c*x + b)) + ((4*c^2*d - 3*b*c*e)*x^2 + (4*b*c*d - 3*b^2*e)*x)*sqrt(d)*log((e*x -
 2*sqrt(e*x + d)*sqrt(d) + 2*d)/x) + 2*(b^2*d + (2*b*c*d - b^2*e)*x)*sqrt(e*x + d))/(b^3*c*x^2 + b^4*x), -1/2*
(2*((4*c^2*d - b*c*e)*x^2 + (4*b*c*d - b^2*e)*x)*sqrt(-(c*d - b*e)/c)*arctan(-sqrt(e*x + d)*c*sqrt(-(c*d - b*e
)/c)/(c*d - b*e)) + ((4*c^2*d - 3*b*c*e)*x^2 + (4*b*c*d - 3*b^2*e)*x)*sqrt(d)*log((e*x - 2*sqrt(e*x + d)*sqrt(
d) + 2*d)/x) + 2*(b^2*d + (2*b*c*d - b^2*e)*x)*sqrt(e*x + d))/(b^3*c*x^2 + b^4*x), -1/2*(2*((4*c^2*d - 3*b*c*e
)*x^2 + (4*b*c*d - 3*b^2*e)*x)*sqrt(-d)*arctan(sqrt(e*x + d)*sqrt(-d)/d) + ((4*c^2*d - b*c*e)*x^2 + (4*b*c*d -
 b^2*e)*x)*sqrt((c*d - b*e)/c)*log((c*e*x + 2*c*d - b*e + 2*sqrt(e*x + d)*c*sqrt((c*d - b*e)/c))/(c*x + b)) +
2*(b^2*d + (2*b*c*d - b^2*e)*x)*sqrt(e*x + d))/(b^3*c*x^2 + b^4*x), -(((4*c^2*d - b*c*e)*x^2 + (4*b*c*d - b^2*
e)*x)*sqrt(-(c*d - b*e)/c)*arctan(-sqrt(e*x + d)*c*sqrt(-(c*d - b*e)/c)/(c*d - b*e)) + ((4*c^2*d - 3*b*c*e)*x^
2 + (4*b*c*d - 3*b^2*e)*x)*sqrt(-d)*arctan(sqrt(e*x + d)*sqrt(-d)/d) + (b^2*d + (2*b*c*d - b^2*e)*x)*sqrt(e*x
+ d))/(b^3*c*x^2 + b^4*x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)/(c*x**2+b*x)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.38327, size = 285, normalized size = 2.13 \begin{align*} \frac{{\left (4 \, c^{2} d^{2} - 5 \, b c d e + b^{2} e^{2}\right )} \arctan \left (\frac{\sqrt{x e + d} c}{\sqrt{-c^{2} d + b c e}}\right )}{\sqrt{-c^{2} d + b c e} b^{3}} - \frac{{\left (4 \, c d^{2} - 3 \, b d e\right )} \arctan \left (\frac{\sqrt{x e + d}}{\sqrt{-d}}\right )}{b^{3} \sqrt{-d}} - \frac{2 \,{\left (x e + d\right )}^{\frac{3}{2}} c d e - 2 \, \sqrt{x e + d} c d^{2} e -{\left (x e + d\right )}^{\frac{3}{2}} b e^{2} + 2 \, \sqrt{x e + d} b d e^{2}}{{\left ({\left (x e + d\right )}^{2} c - 2 \,{\left (x e + d\right )} c d + c d^{2} +{\left (x e + d\right )} b e - b d e\right )} b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)/(c*x^2+b*x)^2,x, algorithm="giac")

[Out]

(4*c^2*d^2 - 5*b*c*d*e + b^2*e^2)*arctan(sqrt(x*e + d)*c/sqrt(-c^2*d + b*c*e))/(sqrt(-c^2*d + b*c*e)*b^3) - (4
*c*d^2 - 3*b*d*e)*arctan(sqrt(x*e + d)/sqrt(-d))/(b^3*sqrt(-d)) - (2*(x*e + d)^(3/2)*c*d*e - 2*sqrt(x*e + d)*c
*d^2*e - (x*e + d)^(3/2)*b*e^2 + 2*sqrt(x*e + d)*b*d*e^2)/(((x*e + d)^2*c - 2*(x*e + d)*c*d + c*d^2 + (x*e + d
)*b*e - b*d*e)*b^2)